
产品中心
功能材料及相关器件的研究、开发、生产和销售
产品名称OmniPlex高通量神经信号采集系统

功能
在体多通道记录系统主要是通过多通道电极阵列植入到实验动物头部,将神经元的胞外高频的动作电位信号以及记录电极所在脑区的局部场电位信号实时采集出来,通过多级脑电信号放大,把几微伏的脑电信号放大到几伏,然后经过数模转换,把信号传输到计算机中,通过软件分析所有信号,实现实时分析,为脑中群体神经元编码、存储和提取神经信息提供了时间上的同步,也反映了大脑神经网络信息处理的不同活动模式。所有放大后的脑电信号也可以被记录下来,然后通过系统中传感器得到动物体的准确空间位置,并且相关信息与脑电信息被同步后存入计算机。
演示版
新软件下载
OmniPlex Release 20.1 – Windows 7 and Windows 10* Post date August 2021
OmniPlex神经记录数据采集系统是Plex系统结合了前端放大和采集与直观和强大的控制和可视化软件。
描述
OmniPlex 系统是一个紧凑、灵活的高性能数据采集平台和强大的在线spike排序平台。它提供低延迟,优越的共模抑制放大,并以其使用简易而闻名。OmniPlex 系统是由OmniPlex chassis、OmniPlex 软件组成,以及新的OmniPlex 系统,Digital Headstages Processor (DHP) 系统-如下所述。OmniPlex 系统的其他版本可以使用OmniAmp或DigiAmp A/D 设备。
- 紧凑型OmniPlex Chassis有两种尺寸可供选择,架式安装和桌面,并配有用于系统组件、获取子系统链路、数字输入和非神经实验信号辅助模拟输入的卡。
- OmniPlex系统控制器操作由OmniPlex服务器组成的Omplex软件,OmniPlex 系统控制器运行由OmniPlex 服务器、用于神经信号处理的"软件引擎"和PlexControl组成的 OmniPlex 软件,后者是提供数据可视化和用户界面与系统交互的主要用户界面。
- Digital Headstages Processor (DHP) 的数字Headstages是 Plexon 先进的子系统。DHP 现在可提供 512 个神经记录通道,降低对环境电气噪音的敏感度,以及更轻的Headstages电缆,使电线更少,以增加动物运动的自由度。此外,它提供实时放大至 40KHz 和 multiplexer timing offsets(相当于同步采样)的调整,以改善分拣质量、trodal采集和软件引用——与其他基于数字Headstages的系统不同。或者,DHP 的前身是 Plexon 的 DigiAmp ™模拟Headstages子系统。DigiAmp 数字化放大器有两种尺寸可供选择:MiniDigi ™ 16、32、48 和 64 个频道,DigiAmp 可提供 64、128、192 和 256 个频道。使用模拟Headstages时建议使用此子系统。两者都提供16位A/D转换,每个通道40kHz,用于采集完整的宽带信号。灵活的数字过滤支持各种滤波类型(Bessel, Butterworth, Elliptic, 2-12 poles, plus adaptive power line noise filter)和切断频率,用于从宽频带信号中提取spikes和场位电位,并用于消除噪音。
- DHP 和 DigiAmp 数字化放大器都与电隔离。
- OmniPlex 系统获得的分拣spikes和连续数据可在收集后 1-2 毫秒内提供给外部客户(通过 C/C++ 或 MATLAB软件开发套件(SDK)开发)。此图是整个 OmniPlex 系统从spike检测输入到硬件输出(包括在线用户客户端程序)的实际端到端延迟。
- 主机中的 DigiAmps 和所有模块通过高分辨率主正时模块同步。同一主计时模块可以扩展,以便与兼容的设备(如 Plexon 的)同步时间的CinePlex 行为研究系统.
- Plexon 提供各种模拟和数字Headstages以满足适合大型和小型动物的各种急性或慢性研究需求。包括新的 64 和 128 通道高通道计数数字Headstages与新的 Samtec 连接器。
- Headstages 电缆有多种选项可供选择,包括:wire gauge, cable wraps, lengths, connectors and configurations。适当的配置将提高您的录音质量,并保护您的设备。所有Plexon的Headstages电缆均可重复使用。
- Hong Kong Plexon 提供一系列坚固、低扭曲的换向器,可靠地保持多种类型的电缆不缠绕。已设计了通信器,以优化信号传输,并采用特定设计,用于模拟Headstages、数字Headstages和/或光遗传学。
- 了解更多关于OmniPlex系统强大的在线spikes排序软件,该系统具有灵活和可定制的主要用户界面。
- Hong Kong Plexon 销售工程师很乐意讨论您的需求以及 OmniPlex 如何能够好地支持您的电生理研究目标。
技术指标:OmniPlex系统特征
下面提供了 OmniPlex 系统的技术规范。Hong Kong Plexon 销售工程师很乐意讨论您的需求以及 OmniPlex 如何能够好地支持您的神经记录和电生理研究目标。
软件
PlexControl
PlexControl 是 OmniPlex 系统强大的在线spikes排序软件,具有灵活和可定制的主要用户界面。该软件代表了下一代信号可视化和易于使用的spikes波形分类方法,并允许研究人员与系统交互。它具有易于使用的信号可视化、spike检测和排序算法。有许多spikes排序方法可用,包括:box, template, line, band sorting in time/voltage space and contour sorting in PCA feature space feature space。PlexControl 程序会在每个通道上自动获取用户定义大小的spike波形快照,并可随时查看以根据需要修改spike排序参数。可以根据实时数据的快照或直接实时"绘制"实时数据来定义单位。每种方法可用于在线 single electrodes, stereotrodes and tetrodes排序。
连续spike、场电位和信号可方便地显示在 PlexControl 灵活、可定制的用户界面中,以及检测到的spikes波形段及其相关的二维 (2D) 和三维 (3D) 功能空间集群,用于在线spikes排序。此外,所有三种数据类型以及阈值spike波形段和数字事件数据都可以记录到每个通道的磁盘中。
OmniPlexServer:
OmniPlexServer是PlexControl控制下的"引擎"。它可直观地显示系统中的各种硬件设备(例如headstages, amplifier)和软件模块(例如spike和 LFP 分离器、阈值、排序)。它从 OmniPlex chassis和放大器获取数据,向这些设备发送命令,并实现软件数字信号处理 (DSP),用于 OmniPlex 的过滤、spike检测和spike排序功能。OmniPlex Server 基于模块化、可扩展的框架(或拓扑)硬件和软件设备,这些设备在数据流拓扑中相互连接,利用拓扑向导使用户能够轻松定义自定义配置,而无需繁琐的低级编辑。
OmniPlex 软件与 Hong Kong Plexon 的 MATLABand C/C++ API 和客户端开发套件(SDKs)以及在线神经探索器链接兼容,实现了低延迟、闭环实验和实时数据在线分析。Hong Kong Plexon 的 PlexNet 协议支持跨任何 TCP/IP 或 UDP 网络进行远程在线数据访问,以及用于修改 OmniPlex 软件输出的PlexUtil,还可以进一步加强该功能PLX数据文件。此外,OmniPlex 中的灵活数字过滤功能也纳入离线排序程序,使用户能够将相同的滤镜离线应用到与在线使用的数据持续采样。
OmniPlex 软件,通过购买任何 OmniPlex 系统预加载到控制计算机上。OmniPlex 软件的演示版本(无需 OmniPlex 硬件即可运行)可在此页面顶部找到。
出版物
2024
- Abbott, J. R., Jeakle, E. N., Haghighi, P., Usoro, J. O., Sturgill, B. S., Wu, Y., Negar Geramifard, Rahul Radhakrishna, Patnaik, S., Nakajima, S., Hess, J., Mehmood, Y., Devata, V., Vijayakumar, G., Sood, A., Thuc, T., Dogra, K., Hernandez-Reynoso, A. G., Pancrazio, J. J., & Cogan, S. F. (2024). Planar amorphous silicon carbide microelectrode arrays for chronic recording in rat motor cortex. Biomaterials, 308, 122543–122543.
- Elorette, C., Fujimoto, A., Stoll, F. M., Fujimoto, S. H., Niranjana Bienkowska, London, L., … Rudebeck, P. H. (2024). The neural basis of resting-state fMRI functional connectivity in fronto-limbic circuits revealed by chemogenetic manipulation. Nature Communications, 15(1).
- Elyashiv Zangen, Hadar, S., Lawrence, C., Obeid, M., Hala Rasras, Hanzin, E., … Sabbah, S. (2024). Prefrontal cortex neurons encode ambient light intensity differentially across regions and layers. Nature Communications, 15(1).
- Feng, Y.-Y., Bromberg-Martin, E. S., & Monosov, I. E. (2024). Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Reports, 43(6), 114341–114341.
- Guo, F., Li, A., Liu, Q., Guo, D., Chen, K., Yao, D., … Xia, Y. (2024). Disruption of TLE epileptiform activity retarded the seizure and reduced pathological HFOs. Brain Research Bulletin, 207, 110869.
Hüer, J., Saxena, P., & Treue, S. (2024). Pathway-selective optogenetics reveals the functional anatomy of top–down attentional modulation in the macaque visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 121(3). - Ibrahim, K. M., Massaly, N., Yoon, H.-J., Sandoval, R., Widman, A. J., Heuermann, R. J., Williams, S., Post, W., Pathiranage, S., Lintz, T., Zec, A., Park, A., Yu, W., Kash, T. L., Gereau, R. W., & Morón, J. A. (2024). Dorsal hippocampus to nucleus accumbens projections drive reinforcement via activation of accumbal dynorphin neurons. Nature Communications, 15(1), 750.
- James Jung Yoo, & Meng, E. (2024). ASIC Integration via Polymer Ultrasonic Bump Bonding to A 64-Channel Penetrating Parylene Multielectrode Array.
- Liu, L., Wang, Y., Sun, J., Wang, Y., Tan, X., & Wang, W. (2024). Sleep deprivation reduces the baroreflex sensitivity through elevated angiotensin (Ang) II subtype 1 receptor expression in the nucleus tractus solitarii. Frontiers in Neuroscience, 18.
- Odegaard, K. E., Bouaichi, C. G., Owanga, G., & Vincis, R. (2024). Neural Processing of Taste-Related Signals in the Mediodorsal Thalamus of Mice. BioRxiv (Cold Spring Harbor Laboratory).
- Rodenkirch, Charles, and Qi Wang. “Optimization of Temporal Coding of Tactile Information in Rat Thalamus by Locus Coeruleus Activation.” Biology, vol. 13, no. 2, 28 Jan. 2024, pp. 79–79
- Sharma, K., Diltz, M., Lincoln, T., Albuquerque, E. X., & Romanski, L. M. (2023). Neuronal Population Encoding of Identity in Primate Prefrontal Cortex. The Journal of Neuroscience, JN-23.
- Shaw, D. C., Krishnakanth Kondabolu, Walsh, K. G., Shi, W., Enrico Rillosi, Hsiung, M., Eden, U., Richardson, R. M., Kramer, M. A., Chu, C. J., & Han, X. (2024). Photothrombosis induced cortical stroke produces electrographic epileptic biomarkers in mice. BioRxiv (Cold Spring Harbor Laboratory).
- Shteyn, M. R., & Olson, C. R. (2024). Neurons of Macaque Frontal Eye Field Signal Reward-Related Surprise. Journal of Neuroscience, e0441242024–e0441242024.
- Stocke, S., & Samuelsen, C. L. (2024). Multisensory Integration Underlies the Distinct Representation of Odor-Taste Mixtures in the Gustatory Cortex of Behaving Rats. the Journal of Neuroscience, e0071242024–e0071242024.
- Vincent, K. F., Zhang, E. R., Cho, A. J., Kato-Miyabe, R., Mallari, O. G., Moody, O. A., & Solt, K. (2024, March 8). Electrical Stimulation of the Ventral Tegmental Area Restores Consciousness from Sevoflurane-, Dexmedetomidine-, and Fentanyl-Induced Unconsciousness in Rats.
- Wu, L., Zhang, D., Wu, Y., Liu, J., Jiang, J., & Zhou, C. (2024). Sodium Leak Channel in Glutamatergic Neurons of the Lateral Parabrachial Nucleus Helps to Maintain Respiratory Frequency Under Sevoflurane Anesthesia. Neuroscience Bulletin/Neuroscience Bulletin.
2023
- Bouaichi, Cecilia G., Camden Neese, and Roberto Vincis. “Intraoral Thermal Processing in the Gustatory Cortex of Awake Mice,” 2023
- Bryant, K. G., Nothem, M. A., Buck, L. A., Singh, B., Amin, S., Curran-Alfaro, C. M., & Barker, J. M. (2023). A history of low-dose ethanol shifts the role of ventral hippocampus during reward seeking in male mice. Eneuro, 10(5).
- Cain, M., & Joshua, M. (2023). Population coding of distinct categories of behavior in the frontal eye field. BioRxiv (Cold Spring Harbor Laboratory)
- Chen, H., Jun, K., Oya, T., Imaizumi, Y., Hori, Y., Matsumoto, M., Minamimoto, T., Naya, Y., & Yamada, H. (2023). Stable neural population dynamics in the regression subspace for continuous and categorical task parameters in monkeys. Eneuro.
- Feng, Y.-Y., Bromberg-Martin, E. S., & Monosov, I. E. (2023). Dorsal raphe neurons signal integrated value during multi-attribute decision-making. bioRxiv.
- Fraser, K. M., Kim, T. H., Castro, M., Drieu, C., Padovan-Hernandez, Y., Chen, B., Pat, F., Ottenheimer, D. J., & Janak, P. H. (2023). Encoding and Context-Dependent Control of Reward Consumption within the Central Nucleus of the Amygdala.
- Fu, H., Zhou, J., Li, S., Zhang, Y., Chen, Z., Yang, Y., Li, A., & Wang, D. (2023). Isoflurane impairs olfaction by increasing neuronal activity in the olfactory bulb. Acta Physiologica.
- Giordano, N., Alia, C., Fruzzetti, L., Pasquini, M., Palla, G., Mazzoni, A., Micera, S., Fogassi, L., Bonini, L., & Caleo, M. (2023). Fast-spiking interneurons of the premotor cortex contribute to initiation and execution of spontaneous actions. The Journal of Neuroscience.
- Jayachandran, M., Viena, T. D., Garcia, A., Veliz, A. V., Leyva, S., Roldan, V., Vertes, R. P., & Allen, T. A. (2023, July 19). Nucleus reuniens transiently synchronizes memory networks at beta frequencies. Nature News.
- Johnson, Teryn D., Lara M. Rangel, and Katherine R. Keefe. “Stimulation-induced entrainment of hippocampal network activity: Identifying optimal input frequencies.”
- Lantheaume, A., Schöneberg, N., Rodriguez-Rozada, S., Doll, D., Schellenberger, M., Kobel, K., Katzenberger, K., Signoret-Genest, J., Tissone, A. I., Ip, C. W., Esposito, M. S., & Tovote, P. (2023). A Viral Vector Model for Circuit-Specific Synucleinopathy.
- Li, M., Qi, Y., & Pan, G. (2023). Optimal feature analysis for identification based on intracranial brain signals with machine learning algorithms. Bioengineering, 10(7), 801.
- Martinez, J., Wilson, L., Brancaleone, W., Peterson, K., Popke, D., Caicedo Garzon, V., Perez Tremble, R., Donnelly, M., Mendez Ortega, S., Torres, D., Shaver, J., Clawson, B., Jiang, S., Yang, Z., & Aton, S. (2023).Hypnotic Treatment Reverses NREM Sleep Disruption and EEG Desynchronization in a Mouse Model of Fragile X Syndrome to Rescue Memory Consolidation Deficits.
- Martinez, J. D., Brancaleone, W. P., Peterson, K. G., Wilson, L. G., & Aton, S. J. (2022). Atypical hypnotic compound ML297 restores sleep architecture immediately following emotionally valenced learning, to promote memory consolidation and hippocampal network activation during recall. Sleep, 46(3).
- Matikainen-Ankney, B. A., Legaria, A. A., Pan, Y., Vachez, Y. M., Murphy, C. A., Schaefer, R. F., McGrath, Q. J., Wang, J. G., Bluitt, M. N., Ankney, K. C., Norris, A. J., Creed, M. C., & Kravitz, A. V. (2023). Nucleus accumbens D1 receptor–expressing spiny projection neurons control food motivation and obesity. Biological Psychiatry, 93(6), 512–523.
- Moschak, Travis M., T. Joseph Sloand, and Regina M. Carelli. “Prelimbic Cortex Activity during a Distress Tolerance Task Predicts Cocaine-Seeking Behavior in Male, but Not Female Rats.” Journal of Neuroscience. Society for Neuroscience, January 25, 2023.
- Munch, A. S., Amat-Foraster, M., Agerskov, C., Bastlund, J. F., Herrik, K. F., & Richter, U. (2023). Sub-anesthetic doses of ketamine increase single cell entrainment in the rat auditory cortex during auditory steady-state response. Journal of Psychopharmacology, 026988112311642.
- Putnam, P. T., Chu, C.-C. J., Fagan, N. A., Dal Monte, O., & Chang, S. W. C. (2023). Dissociation of vicarious and experienced rewards by coupling frequency within the same neural pathway. Neuron.
- Sagalajev, Boriss, Tianhe Zhang, Nooshin Abdollahi, Noosha Yousefpour, Laura Medlock, Dhekra Al-Basha, Alfredo Ribeiro-da-Silva, Rosana Esteller, Stéphanie Ratté, and Steven A. Prescott. “Paresthesia during Spinal Cord Stimulation Depends on Synchrony of Dorsal Column Axon Activation.” bioRxiv. Cold Spring Harbor Laboratory
- Sharma, K., Diltz, M., Lincoln, T., Albuquerque, E. X., & Romanski, L. M. (2023). Neuronal Population Encoding of Identity in Primate Prefrontal Cortex. The Journal of Neuroscience, JN-23.
- Signoret-Genest, Jérémy, Nina Schukraft, Sara L. Reis, Dennis Segebarth, Karl Deisseroth, and Philip Tovote. “Integrated Cardio-Behavioral Responses to Threat Define Defensive States.” Nature News. Nature Publishing Group
- Tan, J., Zhang, X., Wu, S., Song, Z., Chen, S., Huang, Y., & Wang, Y. (2023). Audio-induced medial prefrontal cortical dynamics enhances coadaptive learning in brain-machine interfaces. Journal of Neural Engineering.
- Tseng, C.-T., Welch, H. F., Gi, A. L., Kang, E. M., Mamidi, T., Pydimarri, S., … Thorn, C. A. (2023). Frequency specific optogenetic stimulation of the locus coeruleus induces task-relevant plasticity in the motor cortex. Journal of Neuroscience.
- Xia, Y., Zheng, R., Wang, L., Zhang, A., Li, D., Wu, Y., Gao, Y., Xu, Y., Zhang, B., Li, H., Mak, P. U., Vai, M. I., & Pun, S. H. (2023). A 4-Channel Optogenetic Stimulation, 16-Channel Recording Neuromodulation System with Real-Time Micro-LED Detection Function. Electronics, 12(23), 4783.
- Yang, L., & Martin, J. H. (2023). Effects of motor cortex neuromodulation on the specificity of corticospinal tract spinal axon outgrowth and targeting in rats. Brain Stimulation, 16(3), 759–771.
- Yao, Lulu, Qiuping Ye, Yun Liu, Shuqi Yao, Si Yuan, Qin Xu, Bing Deng, et al. “Electroacupuncture Improves Swallowing Function in a Post-Stroke Dysphagia Mouse Model by Activating the Motor Cortex Inputs to the Nucleus Tractus Solitarii through the Parabrachial Nuclei.” Nature News. Nature Publishing Group, February 13, 2023.
- Zamora-Ursulo, M. A., Perez-Becerra, J., Tellez, L. A., Saderi, N., & Carrillo-Reid, L. (2023). Reversal of pathological motor behavior in a model of parkinson’s disease by striatal dopamine uncaging. PLOS ONE, 18(8).
- Zong, W., Zhou, J., Gardner, M. P. H., Costa, K. M., Zhang, Z., & Schoenbaum, G. (2023). Schema Cell Formation in Orbitofrontal Cortex Is Suppressed by Hippocampal Output.
更多文章请查询:OmniPlex Neural Recording Data Acquisition System - Plexon
Copyright (C) 2020 Hong Kong Plexon All rights reserved 京ICP备14048516号